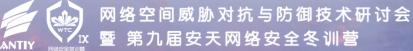
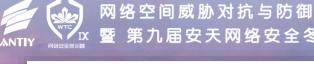


网络空间威胁对抗与防御技术研讨会 暨 第九届安天网络安全冬训营

资源代价与安全算力

安天安全方法框架


夏天 研究院


安天的价值主张

- 依托端到端的安全能力和供应链关口前移的优势,实现全场景的有效防御覆盖与可信场景构造。并依托强大的威胁对抗体系,实现深度客户赋能,驱动客户完成从威胁情报消费,到自主安全能力生产的智能化安全运营变革。
- 我们支撑战略客户达成威胁对抗+安全防护+数字化的大闭环愿景,我们以价值创新体系驱动产业的价值提升。
- 我们的能力是国家网空防御能力的基石,是中国网络空间良赢治理的支点,是维护网络空间人类命运共同体安全的支撑力量。

安全规划与建设的起点

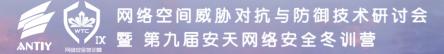
威胁想定框架

CONTENTS

迅速建立威胁认知的能力

-杀伤链与威胁技术框架

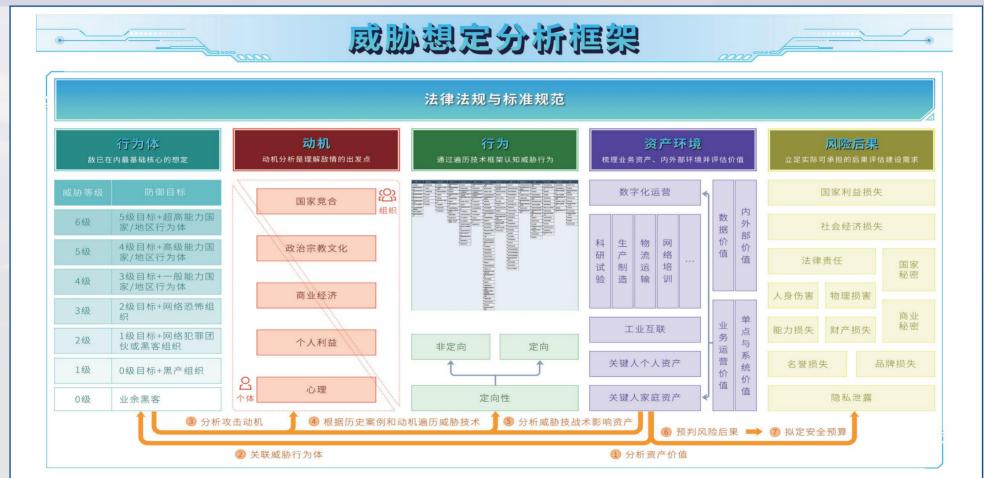
目 录


从威胁框架落地到承载的产品

-能力型产品技术框架

衔接规划 (采购) 与日常运营

-双环驱动与威胁猎杀



安全规划与建设的起点 ——威胁想定框架

威胁想定分析框架

威胁行为体评估体系

1级

公开攻击技术、

部分专有攻击技

术、工具与平台

有专业背景的内部窃

非国家行为体,受商业

利益驱动

工具与平台

2级

专有攻击技术、 工具与平台 漏洞挖掘与利用 技术开发能力

> 网络犯罪团伙或 里客组织

非国家行为体,受商业 利益驱动,也可能受意 识形态驱动, 敢于造成 较大破坏或影响

专有攻击技术、 工具与平台 漏洞挖掘与利用 技术开发能力

3级

网络恐怖组织

非国家行为体,受意识 形态驱动 寻求破坏或影响的最大 4级

部分掌握自身国家/ 地区级网络基础设 施的控制 专有攻击技术、工 具与平台 具有漏洞挖掘与利 用技术开发能力 掌握少量0dav漏洞

> 一般能力国家/ 地区行为体

国家/地区行为体. 受国家/地区利益驱动 网络间谍与网络战一体化。 寻求诵讨网络战获得政治. 经济、军事优势

5级

部分掌握自身国家 /地区级网络基础 设施和外部国家/ 地区级网络基础设 施的控制 专有攻击技术、工 具与平台 跨维度高度集成的 攻击利用手段 漏洞挖掘与利用技 术开发能力 掌握较多0day漏

> 高级能力国家/ 地区行为体

国家/地区行为体 受国家/地区利益驱动. 网络间谍与网络战一体化。 寻求通过网络战获得政治、 经济、军事优势

地区级网络基础设 施、外部国家/地 区级网络基础设施 互联网级网络基础 设施、以及信息科 技供应链的部分控 制能力 专有攻击技术、工 具与平台 跨维度高度集成的 攻击利用手段 漏洞挖掘与利用技 术开发能力 制造漏洞能力

掌握对自身国家/

6级

超高能力国家/ 地区行为体

掌握大量0day漏

国家/地区行为体. 受国家/地区利益驱动, 网络间谍与网络战一体化, 寻求通过网络战获得政治、 经济、军事优势

0级

公开攻击技

术与工具

业余攻击者

业余内部窃密者

非国家行为体

威胁想定分析方法与现有方法相比的进步和差异

- 威胁想定分析框架与传统的等保评估、风险评估是由较大不同,等保评估是一个类似合规点清单的方法,用来评价防御手段建设是否覆盖了等级保护要求。风险评估是基于暴露面和脆弱性的分析,分析。
- 安天威胁想定分析方法,是以客户资产(IT设施)价值与威胁活动和行为体的相关性来入手展开的, 其重点分析客户可能遭到何种层级,甚至哪一个具体的威胁行为体、以何种动机遭到的攻击。同时 从国家安全、社会安全、政企机构安全和个人安全四个层次,来分析不同攻击的后果和影响。
- 进一步从后果和影响来反过来测算安全预算和资源的规模
- 在预算丰富的情况下,帮助客户建构与业务高度融合的一体化运营体系,在预算不充足的情况下帮助客户优先完成端点统管、情报驱动等关键环节建设。

框架推演1:勒索软件威胁数字转型企业,造成直接经济损失

框架推演2: 对手以商业竞争为目的购买黑产服务、投递窃密木马

0级

业余黑客

体

心

理

定向性

隐私泄露

02

迅速建立威胁认知的能力

-OODA循环、杀伤链与威胁技术框架

OODA循环、网空杀伤链与威胁框架

OODA循环: 闭环是一切持续对抗性活动的本质特性。

• 网空杀伤链:杀伤链是OODA循环拆解为向前连续支撑动作阶段的线性映射。

• 网空威胁框架: 网空威胁框架是网空杀伤链按照攻击技术/子技术遍历进行的矩阵化拆解。

威胁框架是基于攻击技术枚举的完成的杀伤链技战术拆解

修改身份验证过程

T1578

修改云计算基础构架

T1112

修改注册表

修改系统映像

利用服务器软件组件

T1205 使用流量信令

T1078

利用有效账户

TA0043	TA0042	TA0001	TA0002	TA0003	TA0004	TA(0005	TA0006 TA0007		TA0008	TA0009	TA0011	TA0010	TA0040	
侦察 (10)	资源开发(7)	初始访问(9)	执行 (12)	持久化 (19)	提权 (13)	防御規道	羅 (40)	凭证访问 (15) 发现 (29)		横向移动 (9)	收集 (17)	命令与控制(16)	数据渗出 (9)	影响 (13)	
T1595	T1583	T1189	T1059	T1098	T1548	T1548	T1599	T1557	T1087	T1120	T1210	T1557	T1071	T1020	T1531
主动扫描	获取基础设施	水坑攻击	利用命令和脚本解释器	操纵帐户	滥用提升控制权限机制	滥用提升控制权限机制	网络边界桥接	利用中间人攻击 (MITM)	发现账户	发现主机接入设备	利用远程服务漏洞	利用中间人攻击 (MITM)	使用应用层协议	自动渗出数据	删除账户权限
T1592	T1586	T1190	T1609	T1197	T1134	T1134	T1027	T1110	T1010	T1069	T1534	T1560	T1092	T1030	T1485
搜集受害者主机信息	入侵账户	利用面向公众的应用程序	利用容器管理服务执行命令	利用BITS服务	操纵访问令牌	操纵访问令牌	混淆文件或信息	暴力破解	发现应用程序窗口	发现权限组	执行内部鱼叉式钓鱼攻击	压缩/加密收集的数据	通过可移动介质通信	限制传输数据大小	按級數据
T1589	T1584	T1133	T1610	T1547	T1547	T1197	T1542	T1555	T1217	T1057	T1570	T1123	T1132	T1048	T1486
搜集受害者身份信息	入侵基础设施	利用外部远程服务	部署容器	利用自动启动执行引导或登录	利用自动启动执行引导或登录	利用BITS服务	在操作系统前启动	从存储密码的位置获取凭证	发现浏览器书签	发现进程	横向传输文件或工具	捕获音频	编码数据	使用非C2协议回传	造成恶劣影响的数据加密
T1590	T1587	T1200	T1203	T1037	T1037	T1612	T1055	T1212	T1580	T1012	T1563	T1119	T1001	T1041	T1565
搜集受害者网络信息	能力开发	添加硬件	利用主机软件漏洞执行	利用初始化脚本引导或登录	利用初始化脚本引导或登录	在主机上建立映像	进程注入	利用党证访问漏洞	发现云基础架构	查询注册表	远程服务会话劫持	自动收集	混淆数据	使用C2信道回传	操纵数据
T1591	T1585	T1566	T1559	T1176	T1543	T1140	T1211	T1187	T1538	T1018	T1021	T1185	T1568	T1011	T1491
搜集受害者组织信息	建立账户	网络钓鱼	利用进程间通信	添加浏览器扩展插件	创建或修改系统进程	反混淆/解码文件或信息	利用漏洞规避妨御	控制认证	云服务仪表板	发现远程系统	利用远程服务	浏览器中间人攻击 (MitB)	使用动态参数	使用其他网络介质回传	篡改可见内容
T1598	T1588	T1091	T1106	T1554	T1546	T1610	T1620	T1606	T1526	T1518	T1091	T1115	T1573	T1052	T1561
通过网络钓鱼搜集信息	能力获取	過过可移动介质复制	利用API	篡改客户端软件	事件触发执行	部署容器	利用反射代码加载	伪造Web凭证	发现云服务	发现软件	通过可移动介质复制	收集剪贴板数据	使用加密信道	使用物理介质回传	擦除磁盘
T1597	T1608	T1195	T1053	T1136	T1068	T1006	T1207	T1056	T1619	T1082	T1072	T1530	T1008	T1567	T1499
从非公开源控集信息	环境整备	入侵供应链	利用计划任务/工作	创建帐户	利用漏洞提权	直接访问卷	注册恶奪域控制器	输入捕捉	发现云存储对象	发现系统信息	利用第三方软件部署工具	收集云存储对象的数据	使用备用信道	使用Web服务回传	姚点侧拒绝服务 (DoS)
T1596		T1199	T1129	T1543	T1484	T1480	T1014	T1556	T1613	T1614	T1080	T1602	T1105	T1029	T1495
从公开技术数据库搜集信息		利用受信关系	利用共享模块执行	创建或修改系统进程	利用城策略修改	执行范围保护	使用Rootkit	修改身份验证过程	发现容器和资源	发现系统地理位置	污染共享内容	收集配置库的数据	使用入口工具传输	定时传输	掀坏固件
T1593		T1078	T1072	T1546	T1611	T1222	T1218	T1040	T1482	T1016	T1550	T1213	T1104	T1537	T1490
搜集公开网站/域		利用有效账户	利用第三方软件部署工具	事件触发执行	容然逃逸	修改文件和目录权限	执行签名的二进制文件代理	网络嗅採	发现城信任	发现系统网络配置	使用备用身份验证材料	收集信息库数据	创建多级信道	将数据转移到云账户	禁止系统恢复
T1594 搜索受害者自有网站			T1569 利用系統服务	T1133 利用外部远程服务	T1574 执行流程场持	T1484 利用城策略修改	T1216 执行签名的脚本代理	T1003 操作系统凭证转储	T1083 发现文件和目录	T1049 发现系统网络连接		T1005 收集本地系统数据	T1095 使用标准非应用层协议		T1498 网络侧拒绝服务 (DoS)
			T1204 诱导用户执行	T1574 执行流程劫持	T1055 进程注入	T1564 隐徽行为	T1553 掀坏信任控制	T1528 窃取应用程序访问令牌	T1615 发现组策略	T1033 发现系统所有者/用户		T1039 收集网络共享驱动数据	T1571 使用非标准端口		T1496 资源劫持
			T1047 利用Windows管理规范 (WMI)	T1525 植入容器映像	T1053 利用计划任务/工作	T1574 执行流程劫持	T1221 模板注入	T1558 窃取或伪造Kerberos 凭证	T1046 扫描网络服务	T1007 发现系统服务		T1025 收集可移动介质数据	T1572 使用协议隧道		T1489 禁用服务
				T1556 修改身份验证过程	T1078 利用有效账户	T1562 削減防御机制	T1205 使用流量信令	T1539 窃取Web会话Cookie	T1135 发现网络共享	T1124 发现系统时间		T1074 数据暂存	T1090 使用代理		T1529 系统关机/重启
				T1137 启动Office应用程序		T1070 删除主机中的信标	T1127 利用受信的开发工具执行	T1111 双因子认证拦截	T1040 网络嗅採	T1497 虚拟化/沙箱逃逸		T1114 收集电子邮件	T1219 利用远程访问软件		
				T1542 在操作系统前启动		T1202 间接执行命令	T1535 未使用/不受支持的云区域	T1552 不安全的凭证	T1201 发现密码策略		_	T1056 输入捕捉	T1205 使用流量信令		
				T1053 利用计划任务/工作		T1036 伤冒	T1550 使用备用身份验证材料			_		T1113 获取屏幕截图	T1102 利用合法Web服务		
				T1505	1	T1556	T1078	1				T1125			

MITRE ATT&CK威胁框架 安天中译版

利用有效账户

T1497

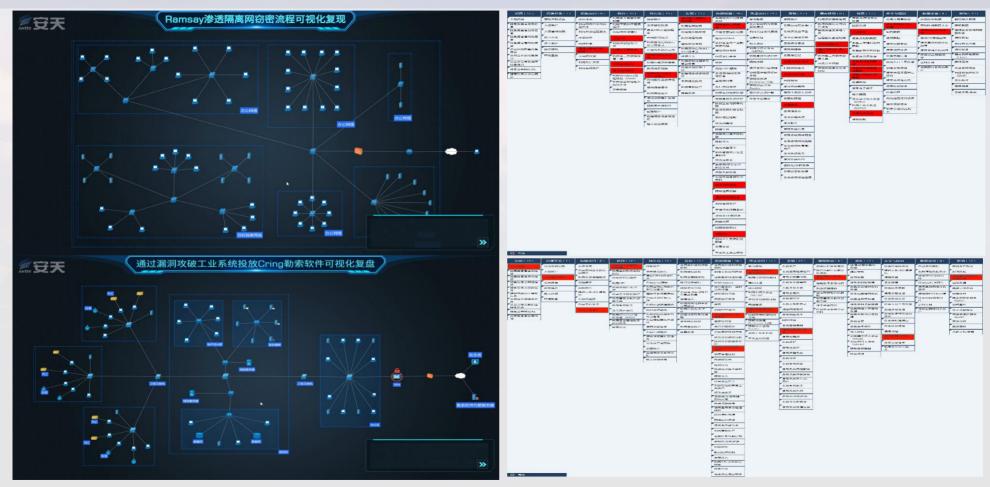
虚拟化/沙箱逃逸

T1600

削弱加密

利用XSL文件执行脚本

威胁框架是一个丰富的 (多维) 知识框架

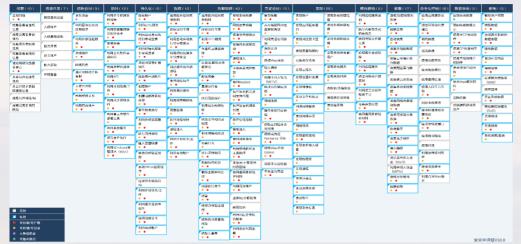


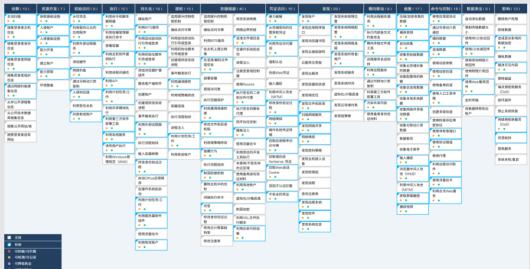
威胁框架能有效用于认知威胁,进行技术和战术的分析

将威胁框架映射到产品能力环节

初始访问	执	行		持久化		提	权		防御规避		凭证访问	发现	横向移动	收集	命令与控制	渗出	影响
水坑攻击	利用AppleScript	利用签名的腳本代理	利用.bash_profile和	启动代理	利用服务器软件组件	操纵访问令牌	利用服务注册表权限	操纵访问令牌	總过Gatekeeper	Process Doppelgäng	. 操纵账户	发现账户	利用AppleScript	捕获音频	利用常用端口	自动渗出数据	删除账户权限
用面向公众的应用	利用CMSTP	利用Source命令	利用辅助功能	启动守护进程	利用服务注册表权限	借助辅助功能	利用Setuid和Setgid位	镇充二进制文件	修改組策略	替换进程内存	查看Bash历史	发现应用程序窗口	利用应用程序部署软件	自动收集	通过可移动介质通信	圧縮数据	損勞數据
利用外部远程服务	利用命令行	加入空格隐藏扩展名	操纵账户	利用Launchctl	利用Setuid和Setgid位	月用AppCert DLL(注	SID历史注入	利用BITS服务	隐藏文件目录	进程注入	暴力破解	发现浏览器书签	利用组件对象模型[C	收集剪贴板数据	利用连接代理	加密数据	造成恶劣影响的数
添加硬件	利用HTML编译文件	利用系统中的第三方	利用AppCert DLL(注	添加LC_LOAD_DYLIB	修改快捷方式	利用AppInit DLL(注册	利用启动项	绕过用户账户控制(UAC)	隐藏用户	冗余访问	凭证转储	发现城侩任	利用远程服务漏洞	收集信息库数据	使用自定义C2协议	限制传输数据大小	网页内容置换攻
通过可移动介质复制	利用组件对象模型(C	利用Trap命令	利用AppInit DLL(注	利用linux本地任务调度	会话发起协议(SIP)和	. 利用Windows应用程	利用Sudo命令	清除命令历史	隐藏窗口	利用Regsvcs/Regasm	获取Web浏览器凭证	发现文件和目录	执行内部鱼叉式钓鱼	收集本地系统数据	使用自定义加密协议	通过备选协议回传	排除磁盘内容
使用鱼叉式钓鱼附件	利用控制面板项	利用受信的开发工具	利用Windows应用程	利用登录项	利用启动项	绕过用户账户控制(U	利用Sudo維存凭证	利用CMSTP	HISTCONTROL	利用Regsvr32	获取文件中的凭证	扫描网络服务	利用登录脚本	收集网络共享驱动数据	编码数据	通过C2倍返回传	排除磁盘结构
使用鱼叉式钓鱼链接	使用动态数据交换协	诱导用户执行	利用认证包	利用登录脚本	利用系统固件	DLL搜索顺序劫持	利用有效能户	代码签名	映像助持	使用Rootkit	获取注册表中的凭证	发现网络共享	利用密码哈希认证	收集可移动介质数据	混淆数据	通过其他网络介质回传	端点侧距绝服务(0
过服务执行鱼叉式	通过API执行	利用Windows管理規	利用BITS服务	利用LSASS 驱动程序	利用Systemd服务	Dylib蚍搏	使用Web Shell	投递后编译	阻止信标捕获	利用Rundll32	利用凭证访问温润	网络嗅探	利用Ticket认证	回传数据准备	前置域名	通过物理介质回传	損坏固件
入侵供应链	通过模块加载执行	利用Windows远程管	使用Bootkit	修改现有服务	利用Windows时间服务	提示用户输入合法凭		利用HTML编译文件	删除工具中的信标	使用脚本	强制认证	发现密码策略	利用远程桌面协议	收集电子邮件	使用域名生成算法(DGA)	定时传输	禁止系统恢复
利用受信关系	利用主机软件漏洞	利用XSL文件执行脚本	添加浏览器扩展指件	Netsh Helper DLL	利用Trap命令	利用事件监控守护进程		利用组件固件	删除主机中的信标	执行签名的二进制文	利用Hook	发现主机接入设备	拷贝远程文件	输入捕捉	使用备用信道		网络侧距绝服务(0
利用有效账户	利用图形用户界面(GUI)		更改默认文件关联	新建服务	利用有效账户	利用温润提权		组件对象模型(COM)劫持	间接执行命令	执行签名的脚本代理	输入捕捉	发现权限组	利用远程服务	浏览器中间人攻击(MitB)	利用多跳代理		资源劫持
	利用InstallUtil		利用组件固件	启动Office应用程序	使用Web Shell	额外窗口内存注入(E		利用连接代理	安装根证书	会话发起协议(SIP)和	欺骗用户输入凭证	发现进程	通过可移动介质复制	获取屏幕截图	创建多级信道		操纵运行时数数
	利用Launchetl		组件对象模型(COM)	路径拦截	利用Windows事件订	. 利用文件系统权限温润		利用控制面板項	利用InstallUtil	软件加壳	使用Kerberoasting技术	查询注册表	共享Webroot目录	推获视频	使用多协议通信		禁用服务
	利用linux本地任务调度		创建帐户	修改属性列表	Winlogon Helper D	利用Hook		使用DCShadow技术	利用Launchctl	加入空格隐藏扩展名	利用Keychain	发现远程系统	SSH動持		使用多层加密		操纵本地存储数
	利用LSASS驱动程序		DLL搜索顺序劫持	端口敲门		映像劫持		反溫滿/解码文件或信息	LC_MAIN劫持	模板注入	LLMNR/NBT-NS投毒	发现安全软件	污染共享内容		端口敲门		系统关机/重启
	利用Mshta		Dylib劫持	端口监控		启动守护进程		禁用安全工具	仿冒	修改文件时间载	网络嗅探	发现软件	利用系统中的第三方		利用远程访问工具		操纵传输中的数
	利用PowerShell		利用事件监控守护进程	利用PowerShell配置		新建服务		DLL搜索顺序劫持	修改注册表	利用受信的开发工具	利用Password Filter	发现系统信息	利用Windows管理员		拷贝远程文件		
	利用Regsvcs/Regasm		利用外部远程服务	利用Rc.common文件		伪造父进程		DLL旁路加载	利用Mshta	利用有效账户	收集私钥	发现系统网络配置	利用Windows远程管		使用标准应用层协议		
	利用Regsvr32		利用文件系统权限温润	重启应用程序		路径拦截		按条件执行	删除网络共享连接	虚拟化/沙箱逃逸	利用Securityd内存	发现系统网络连接			使用标准加密协议		
	利用Rundll32		隐藏文件和目录	冗余访问		修改属性列表		利用資源规劃防御	利用NTFS交換數鑑流。	利用Web服务	窃取Web会话Cookie	发现系统所有者/用户			使用标准非应用层协议		
	利用计划任务		利用Hook	添加注册表运行键/启		端口监控		额外窗口内存注入(EW	混淆文件或信息	利用XSL文件执行脚本	双因子认证拦截	发现系统服务			利用不常用端口		
	使用脚本		利用Hypervisor	利用计划任务		利用PowerShell配置		修改文件和目录权限	伪造父进程			发现系统时间			利用Web服务		
	利用windows服务		映像助持	利用屏幕保护程序		进程注入		删除文件	修改属性列表			虚拟化/沙箱逃逸					
	利用签名的二进制文		利用内核模块和扩展	利用SSP DLL(注册表		利用计划任务		文件系统逻辑偏移	端口敲门								

- 相关/无关
- 降低动作成功率 (降低机会)
- 记录/告警
- 拦截
- 能力揭示




通过威胁框架可以分析产品的布防与互补价值

基于端点侧部署的安天智甲终端防御系统的检测和拦截点

- 通过两者的对比,可见大部分攻击动作是基于系统实施和完成的。
- 同时各种安全能力环节有不同的价值和互补作用。

基于流量侧部署的安天探海威胁监测系统的可输出的攻击动作标签

对抗效果评价定义: 感知、干扰、阻断和呈现网空杀伤链

产品	与杀伤链、威胁框架之间的关系
探海	在网络流量中检测威胁技术、呈现对应的杀伤链并干扰(RST包)威胁行为体的初始访问、收集、获取、命令控制等各种战术动作。
智甲	利用防御技术措施在主机干扰、阻断威胁行为体初始访问、执行、持久化、提权、访问屏障、获取数据、横向移动、命令控制等各种战术动作,并对单机和多主机构成的网络中的杀伤链进行呈现。
追影	通过对威胁载荷的行为体补全各杀伤链环节间的缺失环节和线索,提升检测杀伤链的能力,供给载荷相关情报用以支撑猎杀活动中对杀伤链的干扰和阻断,呈现载荷具备的威胁技术。
拓痕	检测威胁的持久化,呈现其他环节留存的痕迹,辅助分析响应人员及时阻断杀伤链,固化威胁行为证据。
捕风	借助合理塑造的欺骗环境,增大侦查难度、消耗横向移动所需的时间,记录执行、持久化、防御规避、凭证访问、收集、命令控制、影响等其他环节的战术动作和技术细节,实现对杀伤链的干扰。
铸岳	通过清晰测绘网空资产、统一管理访问策略将暴露面呈现出来,并通过合理的塑造建立防御者的先发优势,限制威胁技术可攻击的范围和路径,使得检测杀伤链各环节变得更容易。
智信	管理身份、凭证、访问可达性,检测初始访问、凭证访问、收集、数据渗出等相关的战术动作,限制威胁的活动路径范围, 呈现多地域环境下的杀伤链。

03

从威胁框架落地到承载的产品 ——能力型产品技术框架

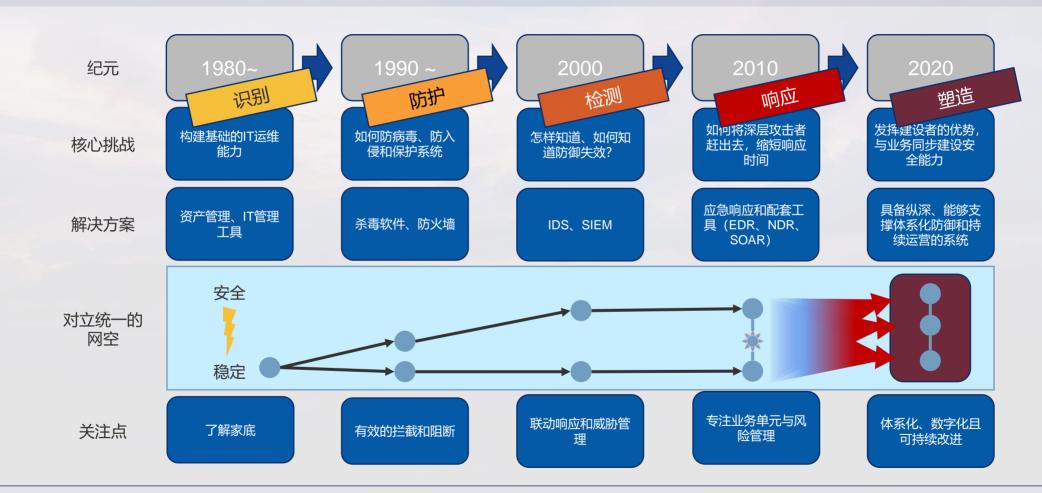
目前的几个防御矩阵

	网络安全框架 (CSF)	Shield积极防御框架	D3FEND知识图谱	安天ISPDR 防御技术框架
发布 机构	NIST	MITRE	MITRE	安天
首次发布	2014年	2020年	2021年	2020年
发布 背景	CSF由NIST与私营和公共部门 密切合作开发,是美国各组织 自愿 采用的 基于风险的方法 。	SHIELD是MITRE在攻击建模 分析取得良好成功后,对防御 建模进行的有益尝试 。	D3FEND 最初版本的主要目标 是促进防御性网络安全技术功 能词汇的标准化。	融合相关经验,特别是威胁对 抗与安全规划的整合 。
主要特色	使用易于理解的通用语言提供 一系列所需的网络安全活动和 结果,指导企业管理和降低其 网络安全风险。	SHIELD的表现形式有利于组 织进行网络防御基础设施的部 署决策过程。	细化网络安全防御对策功能、 技术,使网络安全从业人员能 针对特定网络威胁制定防御措 施,缩窄防御系统潜在攻击面。	基于防御关键动作的概念,面 对杀伤链形成响应过程。
当前版本	V1.1	V9.0	0.9.2-BETA3	V0.2

安天安全能力框架——关键防御动作战术环节

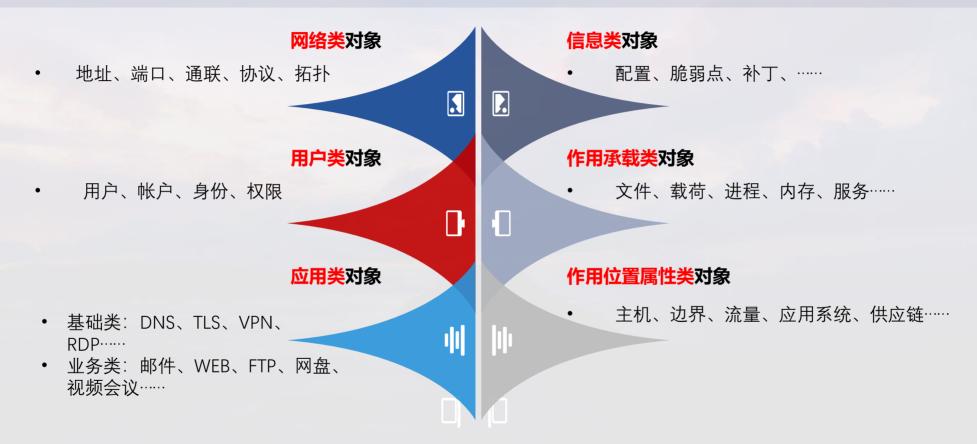
塑造是建立防御主动性的前提。塑造是对IT场景的构建、重构和调整过程,通过对IT规划和场景的干预,形成环境、场景、拓扑路径、配置和安全策略的优化、并结合欺骗布防 使攻击者处于不利位置。

检测是发现、定位和定性网络安全威胁的方法 统称。本质上是在数据对象和行为对象、实体 对象中发现、标定和量化风险实体、风险活动 的过程。


识别是网络安全管理的基础。识别是是一个自我了解和认知过程,基于采集和探测枚举,形成对资产、人员、业务、暴露面、脆弱性等完整认识,构筑起网空防御地形认知基础。

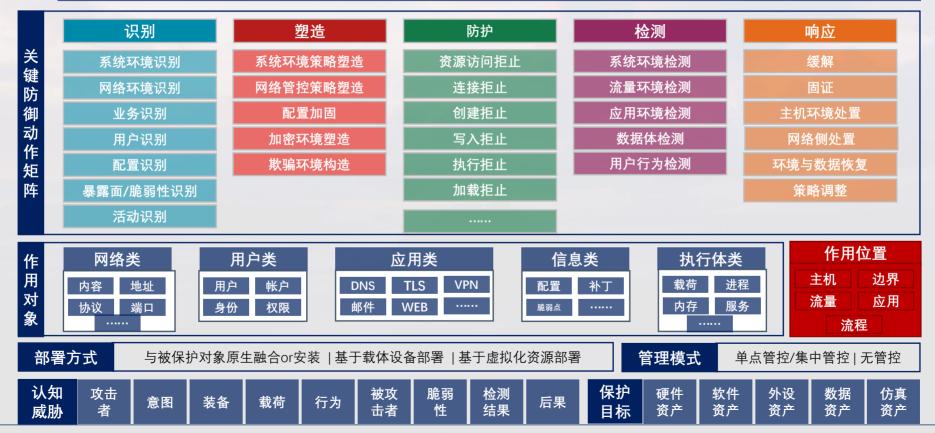
防护是系统对威胁做出的行为反应。 防护是避免威胁行为达成预期后果的 交互过程。其核心是对威胁活动和违 规行为的拒止动作。 响应是处理、管理风险和威胁事件的过程。 通过制定并执行适当的行动,利用组织所 具备的控制潜在网络安全事件影响的能力, 对检测到的网络安全事件采取处置措施, 旨在清除网络安全事件影响。

关键防御动作的成型历史



核心要素——作用对象集合

安全的可运营基础来自持续的对象数据采集和元数据化

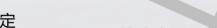


安天产品防御矩阵

指挥、决策与控制

汇聚、关联、统计、分析模型与呈现

防御框架关键防御动作映射威胁框架,实现向防御体系的能力组装



威胁场景化想定

资产环境

工业互联

关键人个人资产

立足实际可承担的后果评估建设需求

社会经济损失

物理损害

财产损失

国家 秘密

商业


秘密

品牌损失

法律责任

能力损失

名誉损失

关键防御动作

能力组装

威胁想定

定向性

非定向

行为

通过遍历技术框架认知威胁行

2级

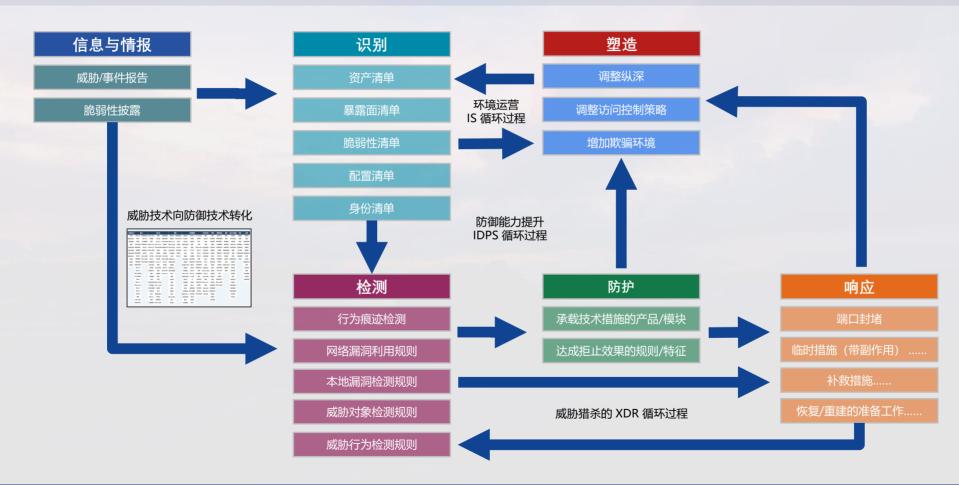
行为体

0级目标+里产组织

业余黑客

5级目标+超高能力国家/地区

动机 动机分析是理解敌情的出发病


政治宗教文化

商 业 经 济

人 利 益

威胁对抗驱动防御能力提升

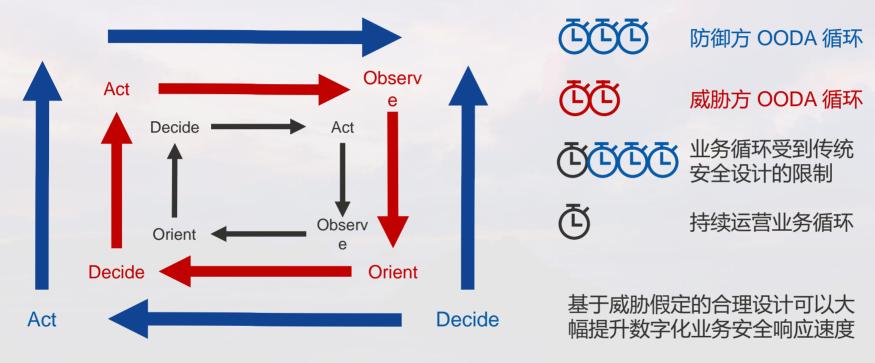
04

衔接规划(采购)与日常运营——双环驱动与威胁猎杀

数字化企业安全运营两类工作闭环

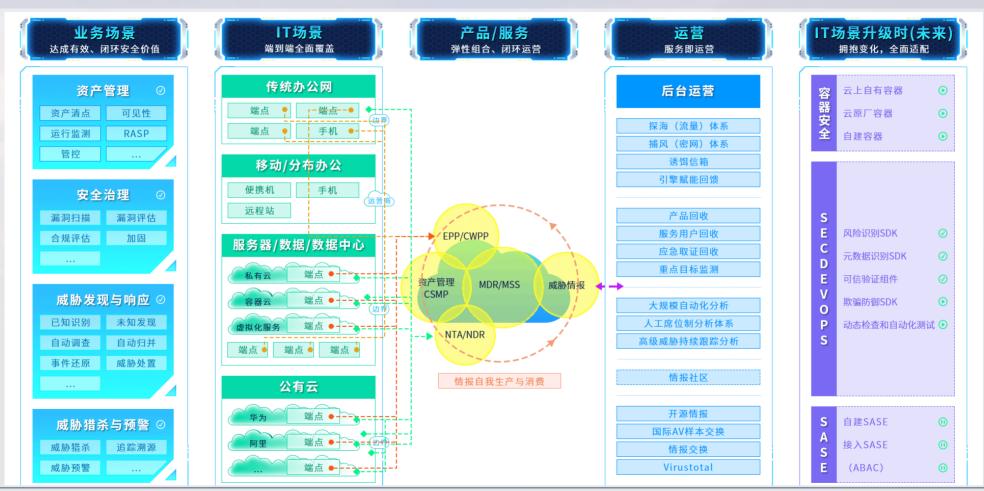
在数字化企业网络安全运营工作业务流程支持上,构建面向日常安全运营工作的OODA循环和面向安全治理、策略调整的 PDCA循环的双业务流程引擎。

针对日常安全运营工作,实现支撑"观察-研判-决策-执行"的"OODA"型业务闭环,达成比威胁方更快的OODA循环。



针对监管政策要求、企业安全治理需求,实现支撑"策划-实施-检查-调整"的"PDCA"型业务闭环。

威胁对抗的数字化运营与 OODA 循环


(OODA_{业务} - OODA_{CIO+CISO}) = 滞后的响应时间

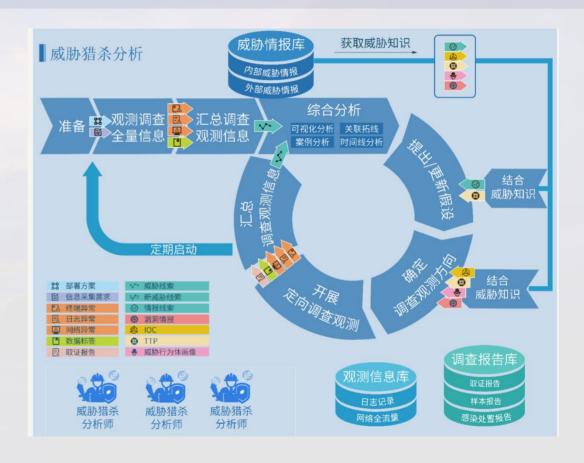
新企业在早期能够更早更迅速收敛更大的攻击敞口,往往不是因为安全是目标。(而是因为更快的响应速度)—— 美国国防部 引自 Ryan McGeehan

安全运营体系示例

动态综合防御体系框架

此消彼长,在数字化世界对抗威胁比拼的是速度

通过防御体系建设支撑数字化世界快速检测与响应威胁攻击,支撑企业安全数字化转型成功。



威胁猎杀分析

- 信息系统需具备全量信息采集能力
 - 如果没有可以临时部署探海
 - 终端亦可通过工具手工采集
- 全量观测、排查已知、分析异常
 - 不符合业务场景的"白流量"
 - P2P等隐蔽通讯的网络流量
 - 不常用的端口、字符、扩展名
 - 格式与扩展名不一致
 - 非系统目录下的系统程序
 - 快捷方式中调用系统命令或脚本
- 汇总调查、形成线索
- 综合分析
 - 可视化分析
 - 关联拓线分析
 - 案例分析
 - 时间线分析
- 提出假设、用事实验证或排除

网络空间威胁对抗与防御技术研讨会 暨 第九届安天网络安全冬训营

谢谢大家

安天冬训营 wtc. antiy. cn